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Abstract: For the nonlinear, non-stationary and weak correlation signals existing in a 
MEMS (Microelectronic-mechanic system) gyro, a denosing method based on improved 
Adaptive Time-scale Decomposition (IATD) was proposed. The signals, which was 
captured by the static experiment, were decomposed into a cluster of intrinsic time-scale 
component based on IADT process. Then, according to the characteristics of the gyro 
random error, the gyro signals were reconstructed to implement the signal denoising. AR 
(2) model was applied to set up a mathematical model of the reconstructed signals. After 
filtering and modeling, the random error of gyro is reduced by 83.72%, which means the 
random error of MEMS gyro is suppressed effectively. 

1. Introduction 

Micro electro mechanical system (MEMS) gyro has been widely used in low-cost navigation 
system for its advantages of small size, low cost, impact resistance and high reliability. [1-2]),  
However, due to the manufacturing process and other reasons, MEMS gyroscopes have low 
accuracy and noise compared to other gyroscopes, and are particularly affected by temperature. 
Therefore, the important error terms and low-frequency noise characteristics are "submerged" in 
high-frequency noise. Consequently, it is difficult to establish the MEMS gyroscope's random error 
model by using original output directly. [3]. For the above mentioned, it is necessary to denoise the 
collected original signals. 

At present, for the denoising of gyro, wavelet transform is mainly used. The wavelet denoising 
methods are divided into three categories [4]. They are: modular maximum reconstruction 
denoising, spatial correlation denoising, and wavelet domain denoising. Among them, the wavelet 
threshold denoising method is simple and effective, and widely used [5-8]. The idea is to use the 
Mallet algorithm to obtain the wavelet coefficients at different scales. By comparing with the preset 
thresholds, the wavelet coefficients with smaller absolute values are set to zero, while the 
coefficients with larger absolute values are retained or shrunk. Although the wavelet thresholding 
method can implement simply, but it requires accurate threshold selection, and even it depends on 
the variance of the noise. At the same time, the basis of the wavelet in the method is a fixed 
function, and it is not adaptable for non-stationary and non-linear signals, which cannot reflect the 
essential characteristics of the changed signal [9].The literature [10] involves compressive sensing 
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theory to reconstruct the coefficients of the wavelet to achieve the purpose of noise reduction. 
However, compared with the wavelet threshold denoising, It caused a greater degree of noise 
removal, and the compression ratio needs to be selected based on experience. When the selection is 
inappropriate, there is a possibility that the noise reduction result is inferior to the wavelet threshold. 
The literature [11] adopts empirical mode decomposition and high-order statistical methods for 
noise reduction. After processing, the SNR（ SIGNAL-NOISE RATIO) of the gyroscope is 
increased by 5.6 dB. Similarly, the angle random walk coefficient and the zero bias instability are 
reduced by approximately one order of magnitude. That said, the empirical mode decomposition 
filter is effective and obvious for nonlinear and non-stationary MEMS gyro signals. In literature 
[12], the CEEMD method is used and the original signal is decomposed into the sum of several 
IMFs. The former IMF groups are removed and the remaining are reconstructed. By comparing the 
Allan variances of the signals before and after the reconstruction, it is shown that the noise after 
CEEMD is greatly reduced, and the effective information of original signal is retained. However, 
the literature does not give the reasons for discarding the previous IMF groups. 

In this paper, the adaptive time-scale decomposition algorithm is used to decompose the original 
signal collected by the gyroscope. According to the low-frequency characteristics of the random 
error of the gyroscope, the decomposed intrinsic time-scale component is analyzed in the frequency 
domain, and the gyro signal is reconstructed based on the spectral characteristics of the intrinsic 
time-scale component. Further, the Allan variance coefficients of the reconstructed signal and the 
acquired signal are compared, which shows that the time-scale decomposition algorithm can 
effectively denoise. Finally, based on the reconstructed signal, a time series autoregressive AR 
model was established to achieve accurate prediction and analysis of the random error of the 
gyroscope. 

2. Spectrum Characteristics of MEMS Gyroscope Signals and Allan Variance 

 
Figure 1. Gyro signal spectral characteristics 

According to [13], the spectral characteristics of a gyroscope are shown in Figure 1. The 
spectrum signal consists of a long-term (random) error, a short-term error, and the gyroscope's own 
operation characteristics. The short-term error mainly includes the system disturbances (such as the 
vibration of the carrier) and the associated noise which generates mainly in the high frequency part 
of the spectrum. While the long-term error is in the low frequency band, which mainly includes the 
drift error and white noise. The long-term (random) error of a gyroscope can be analyzed by the 
Allan variance method and eliminated by establishing its predictive model. 

In 1966, David Allan proposed a simple method of analysis of variance when studying the 
stability of oscillators, which is called the Allan variance [14]. The Allan variance is a method to 
analyze the frequency domain stability in the time domain. It not only can determine the 
characteristics of the basic random process that produces data noise, but also can identify the source 
of a given noise item. The relationship between Allan variance and power spectral density is: 
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Where: 
σ2(T) is the Allan variance; 
SΩ(f) Is the power spectral density of the random process  Ω(T); 
Assuming that the gyro noise sources are statistically independent, the calculated Allan variance 

is the sum of the squares of the errors for each type. The Allan variance can be obtained by the 
nonlinear least-squares fitting method. It can be expressed as a polynomial form fitted to a power of 
-2 to 2 of time t. By solving the coefficients of the polynomial, the coefficients of error sources such 
as quantization noise, can be determined. 

3. Improved Adaptive Time-scale Decomposition Algorithm 

Adaptive time-frequency analysis is a new type of signal analysis method based on the 
characteristics of the signal itself. The most representative is the empirical mode decomposition 
(EMD) proposed by Huang et al. [15] in 1998. The method defines an intrinsic mode function (IMF) 
with physical meaning of instantaneous frequency. On the basis of its reasonable interpretation, the 
baseline signal is constructed by averaging the upper and lower extreme point envelopes, so that 
any complex signal can be decomposed into the sum of several intrinsic mode components. After 
the method was proposed, EMD has received extensive attention and has been widely used in the 
field of mechanical fault diagnosis, biomedicine, acoustics, and communications science.However, 
there is several problems such as over-envelope, under-envelope, modal confusion, and end-point 
effects.In 2007, Frei et al. [16] proposed the intrinsic time scale decomposition (ITD), which 
defines the physical rotation of the instantaneous frequency (proper rotation, PR). The baseline 
signal is given by the transformation of the signal itself. The ITD method can adaptively decompose 
a complex signal into a number of mutually independent PR components that have physical 
significance at instantaneous frequencies.  Frei et al. conducted a comparative study between the 
ITD method and the EMD method. The results show that ITD is superior to the EMD method in 
terms of calculation time, suppression of endpoint effects, and the like. However, the definition of 
the baseline in the ITD method is based on the linear transformation of the signal itself, so from the 
second component, There is a noticeable signal distortion.  

For the problem of signal distortion, this paper proposes an improved adaptive time-scale 
decomposition algorithm. The main reason for the signal distortion is that the baseline curve 
obtained through the linear transformation is not continuous. Therefore, it is necessary to use a 
curve fitting method to generate baselines. The improved fitting method is based on the 
combination of cubic spline difference and cubic polynomial difference. Although the cubic spline 
interpolation method has an ideal smoothness and has second-order continuous differentiability, it 
will cause “overshoot” phenomenon and produce an extreme point that does not exist. The degree 
of cubic polynomial interpolation is less smooth than cubic spline. For this purpose, a hybrid 
method combining cubic spline interpolation and cubic polynomial interpolation is proposed. The 
calculation process is as follows. 

Taking the original signal ( )x t  as the signal to be processed, it is determined that all local 
extreme ( )0 0, Xτ  of the signal (k = 1,2,3 ... M, M is the number of extreme points). Mirror 
symmetric continuation methods are used for extending sequence endpoints to obtain the left and 
right endpoint extremes ( )0 0, Xτ  and ( )1 1,M MXτ + + , and calculate 1kL + : 
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Where： 
0<α<1, generally 0.5.              
According to a series of  kL  points obtained by the formula (3), The fitting curve 1L  was 

calculated by a cubic spline difference fitting method，and then a cubic polynomial difference 
method is used to fit the curve 2L , Finally, the baseline signal L  is obtained by combination. 

1 2(1 )L L Lβ β= + −                            (3) 

Where： 
0 1β< <  , generally 0.4, when used; 
The fitted curve can not only effectively avoid the “overshoot” phenomenon, but also maintain 

the advantages of the cubic spline interpolation method. When compared, we conclude that the 
smoothness of the curve fitted using the combination method is better than the baseline obtained by 
the linear transformation. Therefore, using a combination of fitting methods to construct the 
baseline can significantly reduce signal distortion. 

The baseline signal ( )L t  is subtracted from the original signal ( )x t  to obtain the residual signal
( )m t : 

( ) ( ) ( )m t x t L t= −                                                   (4) 

Two basic conditions for detecting whether ( )m t  satisfies the intrinsic time-scale component: 
(1)   In the entire data sequence, the number of local extreme points Nm and the number of zero 

crossing points zN  must be equal, or at most one difference, that is, satisfy: 

1m zN N− ≤                              (5)  

It guarantees that the signal satisfies the distribution of Gauss stationary process and removes 
riding waves. 

(2)   The baseline signal L  has a mean value of 0 because the baseline signal L  is the mean of 
( )x t . This condition can force the baseline signal to be symmetrical and smooth the asymmetry 

amplitude. In actual operation, a small amount of ε can be set: 

1

1 ( )
n

i
L i

n
ε

=

≤∑                                              (6) 

It can be considered that the baseline signal has an average of 0; If it is not satisfied, take ( )m t  

as the original signal and return to step 1. If it is satisfied, the corresponding intrinsic time scale 
component ( )kITC m t=  ( k  =1, 2, 3...) is decomposed,, and then the signal to be processed is 

subtracted from the intrinsic time scale component to obtain the remaining signal,  

( ) ( )k kr t x t ITC= −                              (7) 

Let ( ) ( )kx t r t=  and rejoin step 1 for calculation. Then, the original signal can be decomposed the 
original signal into a series of time-scale components. which is: 
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In order to prevent over-screening due to overly restrictive conditions for the local symmetry of 
single-mode components, similar to the EMD  method, the standard deviation SD  between two 
successive processing results is defined as: 
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According to the characteristics of the gyro signal, SD  = 0.2 is taken as the termination 
condition, that is, SD  ≤ 0.2, then the decomposition is stopped. 

The improved adaptive time-scale decomposition algorithm takes the time span corresponding to 
any two adjacent local extreme points in the signal as the characteristic time-scale parameter. First, 
the small fluctuation components of the signal with the characteristic time scale are separated. With 
the increase of the number of decompositions, the characteristic time scale parameter of the residual 
signal increases until the characteristic time scale parameter is greater than the length of the signal 
itself. From this it can be seen that the frequency of the intrinsic time scale components 
decomposed is ranked from high to low. 

4. Experimental Results and Analysis 

In this experiment, MEMS uses the ADIS16488 inertial sensor integrated chip. The experimental 
data source is a static experiment of 8 hours at a temperature of 25° on a stationary stand, and the 
data collection interval is 0.02 seconds, with a total of 1.44 million data. After the wild value 
elimination, trend item extraction, and zero mean processing, the results are as follows. 

 
Figure 3. Pre-processing data of MEMS gyroscope static experiment 

 
(a) Autocorrelation                             (b) Partial autocorrelation 

Figure 4. Correlation test 
The run-test method was used to test the stationarity of the preprocessed data. The number of 
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positive and negative signs in ( )x t  was: 1N  =717003, 2N  =717726. The number of runs is γ = 
716954 and the calculated test statistic is U  = -1.6021∈  [-1.96, 1.96]. This shows that the 
preprocessed data is stationary random data. The autocorrelation and partial autocorrelation 
calculations of the data are as fig.4 

From Figure 4, we can see that the ACF and PACF of the MEMS gyroscope random error 
sequence all have the first-order truncation characteristic, and it cannot be judged which kind of 
time series model structure it belongs to. The reason for this phenomenon is that the low-frequency 
error signal of the MEMS gyroscope is "submerged" in the high-frequency noise, and the 
correlation of the low-frequency random error sequence of the gyroscope is weakened. Therefore, 
there is a need for further noise reduction of the data. The improved adaptive time-scale 
decomposition algorithm is used to decompose the pre-processed signal, and it is decomposed into 
11 layers according to the cut-off condition of SD =0.3. The decomposition results of 1 11ICT ICT−  
are shown in the following figure. 

 

 
Figure 5.Decomposition results 

According to the spectral characteristics of the gyro signal, 11 eigen-time scale components are 
subjected to spectrum analysis, and from the corresponding spectrum, it can be clearly obtained that 
the improved adaptive time-scale decomposition algorithm decomposes the processed signal layer 
by layer from high to low. The 

1ITC  mainly contains high-frequency noise signals and mainly 
contains the short-term errors of the gyro signals. The 

11ITC  is a low-frequency signal that mainly 
contains the long-term error of the gyroscope. According to the spectral characteristic of the 
intrinsic time component, we choose 

1 11ITC ITC−  to reconstruct the signal of the gyroscope. AR (2) 
modeling of the reconstructed signal results as follows: 

( ) 1.791 ( 1) 0.8708 ( 2) ( )z k z k z k kε= − − + − +  

 
Figure 6. AR(2) modeling of the reconstructed signal results 
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As shown in the above figure, the AR(2)-order model can better predict the random error of the 
gyroscope. As shown in Table 1, the improved adaptive time-scale decomposition reconstructs the 
signal and the AR(2) model predicts random errors. The Allan variance was used to analyze the 
original signal and the predicted residuals. The random noise of the gyroscope reduced by an 
average of 83.72%, among which the angular random walk and the zero bias instability error were 
the most obvious. 

Table 1. Gyroscope random error coefficient statistics before and after processing 

Random error 
term Unit Before 

processing After processing 
Random error 

reduction 
percentage (%) 

Quantization 
Error(Q) μrad 8.4038×10-8 1.2820×10-8 84.74  

Random angle 
walk(N) °/h1/2 0.0201  0.00059  97.09  

Zero bias   
instability(B) °/h 0.1282  0.0079  93.84  

Angular rate 
random walk(K) (/h)/h1/2 0.0816  0.0247  69.73  

Scale factor(R) (°/h)/h 0.0788  0.0211  73.22  

5. Conclusion 

This paper presents an improved adaptive time-scale decomposition algorithm for MEMS 
gyroscopes. First, the IATD algorithm for nonstationary and nonlinear signals is described. AS the 
same time, the completeness and adaptability of the algorithm are analyzed. Then, we studied and 
discussed the collected MEMS static experimental signals. Because the random error signals are 
submerged in the high-frequency noise signals of the short-term errors of the gyroscopes, the weak 
correlation of the gyro signals is expressed. . Therefore, the IATD algorithm is used to decompose 
the original signal of the gyroscope. Spectral analysis is performed on the decomposed signal, and 
ITC is selected to perform signal reconstruction in accordance with the characteristic frequency of 
the random error of the gyro. AR (2) was modeled for the reconstructed signal, and the time series 
model of the random error of the gyroscope was established. Finally, the noise indicators before and 
after signal processing were compared. The factors such as the angle random walk coefficient and 
the zero bias instability are reduced by one order, which shows that the combination of the IATD 
decomposition and the AR (2) model prediction error analysis method has a significant effect on the 
noise reduction of nonlinear and non-stationary MEMS gyro signals. 
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